
Sandia National Laboratories

Programmable Hardware Shaders

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000.

Fact Sheet

Programmable hardware shaders are written in C-like 
languages that take advantage of GPU architecture. For 
instance, GPUs represent four-dimensional vectors as 
first-class variable types and provide hardware support for 
efficient vector operations. This is helpful in lighting calcula-
tions with typically involved vector operations.

In practice, shaders can be compiled and installed to 
hardware just before they are used in rendering. The 
application configures the GPU to use a specific shader and 
sets its parameters. It then processes geometry and topol-
ogy to hardware through standard graphics APIs (e.g. 
OpenGL or DirectX).

Programmable hardware shaders can replace the fixed-
functionality vertex and pixel shaders traditionally found on 
Graphics Processing Units (graphics cards or GPUs). This 
allows greater control of how data are rendered to images 
and makes possible the use of sophisticated rendering 
techniques at interactive frame rates. What was once fixed 
in hardware is now programmable, making available to 
application developers a wide range of graphics techniques.

GPUs are designed to process geometry (vertices) and 
topology (e.g., triangles, lines, polygons, etc.) to 2D 
images. For example, in the diagram above, the blue 
polygon is rasterized to pixels (or fragments) after each 
vertex is processed by an instance of a vertex shader. Each 
pixel is then processed by a pixel or fragment shader to 
produce the final image. User-defined textures and 
variables (Uniform Parameters) can act as input param-
eters to custom shaders. These parameters can be initial-
ized for each geometric object before it is rendered. 

Figure 1. GPU schematic with programmable hardware shaders.

SAND2006-3612P
April 2006

t Progra
 

Fragment Program &
Per-Vertex “Varying”
Parameters for each
Fragment

t Progra
 

Fragment Program &
Per-Vertex “Varying”
Parameters for each
Fragment

t Progra
 

Fragment Program &
Per-Vertex “Varying”
Parameters for each
Fragment

 

Geometry

Hardware Variables

Vertex

‘s change for each Vertex

‘s change for each Fragment

Uniform Parameters

‘s are specified when Shaders
are loaded to hardware

Vertex Program &
Per-Vertex “Varying”
Parameters

Final Image

Fragment/Pixel

Textures

t Progra
 

Fragment Program &
Per-Vertex “Varying”
Parameters for each
Fragment



Procedural techniques can add details not captured in 
the original computer-aided design (CAD) model. Bump 

and displacement mapping can be implemented in 
hardware to create a visual impression of macroscopic 

surface features. In the image above, dimples that were 
not in the original geometry are applied to a flat plane in 

the hardware-rendering step.

For more information, contact
Gary Templet (925) 294-4540

The images above hint at the realism that can be 
achieved with custom shaders. The top image results 
from the standard fixed-functionality pipelines, per-vertex 
Phong shading. The bottom images results from a 
custom fragment shader that implements per-pixel 
shading algorithms that account for microscopic surface 
features through a phenomenological micro-facet model. 
This is particularly well-suited for rendering metals.

Additional realistic effects can help users distinguish 
between materials. In the composite image above 
shininess, surface roughness, and color, combine to 
provide visual cues about material composition and 
surface finish. Rendered here are CW from top left, 
18K Gold, Copper, Polished Brass, Chromed Plastic, 
Aluminum, and Vinyl.


	programmable_front.pdf
	programmable_back.pdf

